Skip to main content
padlock icon - secure page this page is secure

The hypocretin–orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system

Buy Article:

$47.00 + tax (Refund Policy)


Recent evidence suggests that the hypocretin–orexin system participates in the regulation of reinforcement processes. The current studies examined the extent to which hypocretin neurotransmission regulates behavioral and neurochemical responses to cocaine, and behavioral responses to food reinforcement. These studies used a combination of fixed ratio, discrete trials, progressive ratio and threshold self-administration procedures to assess whether the hypocretin 1 receptor antagonist, SB-334867, reduces cocaine self-administration in rats. Progressive ratio sucrose self-administration procedures were also used to assess the extent to which SB-334867 reduces responding to a natural reinforcer in food-restricted and food-sated rats. Additionally, these studies used microdialysis and in vivo voltammetry in rats to examine whether SB-334867 attenuates the effects of cocaine on dopamine signaling within the nucleus accumbens core. Furthermore, in vitro voltammetry was used to examine whether hypocretin knockout mice display attenuated dopamine responses to cocaine. Results indicate that when SB-334867 was administered peripherally or within the ventral tegmental area, it reduced the motivation to self-administer cocaine and attenuated cocaine-induced enhancement of dopamine signaling. SB-334867 also reduced the motivation to self-administer sucrose in food-sated but not food-restricted rats. Finally, hypocretin knockout mice displayed altered baseline dopamine signaling and reduced dopamine responses to cocaine. Combined, these studies suggest that hypocretin neurotransmission participates in reinforcement processes, likely through modulation of the mesolimbic dopamine system. Additionally, the current observations suggest that the hypocretin system may provide a target for pharmacotherapies to treat cocaine addiction.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: SB-334867; fast scan cyclic voltammetry; microdialysis; mouse; rat; reward

Document Type: Research Article

Publication date: 01 January 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more