Skip to main content
padlock icon - secure page this page is secure

Free Content Analysis of cartilage maturation using micromass cultures of primary chondrocytes

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

A micromass culture (MM-C) system of primary immature chondrocytes for functional analysis of soluble factors involved in the maturation step of cartilage was previously developed. Ectopically expressed BMP-2 was shown to induce the expression of the Ihh and Noggin genes. Here it is demonstrated that, upon longer culture, secreted bone morphogenetic protein-2 (BMP-2) further promotes the maturation step as judged by the induction of type X collagen and BMP-6 expression, which are known to be detectable in the later phase of cartilage maturation. Induction of all of these genes by secreted BMP-2 was not inhibited by ectopic expression of parathyroid hormone-related peptide (PTHrP) induced by retrovirus vector infection, although the same virus vector showed strong inhibitory effects on the expression of type X collagen gene or alkaline phosphatase activity in mature chondrocytes. These results suggest that the maturation-promoting activity exhibited by BMP-2 is dominant over the suppressive effect of PTHrP in immature chondrocytes. When the BMP-6 gene was introduced into the same virus vector as that used for BMP-2, it induced the same sets of genes (Ihh, Noggin, type X collagen and endogenous BMP-6) as BMP-2 did. These results also suggest that BMP-6 would autonomously maintain and/or promote a later stage of chondrocytic maturation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: bone morphogenetic protein; chondrocyte; micromass culture; parathyroid hormone-related peptide; retrovirus vector

Document Type: Research Article

Affiliations: 1: Department of Gene Regulation, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 and 2: Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-0814, Japan.

Publication date: 01 June 2000

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more