Skip to main content
padlock icon - secure page this page is secure

Effects of porcine oocytes on the expression levels of transcripts encoding glycolytic enzymes in granulosa cells

Buy Article:

$52.00 + tax (Refund Policy)

Oocytes play critical roles in regulating the expression of transcripts encoding the glycolytic enzymes phosphofructokinase, platelet (PFKP) and lactate dehydrogenase A (LDHA) in granulosa cells in mice, but whether this is the case in pigs or other mammals has not been adequately investigated. Therefore, the aim of this study was to determine whether porcine oocytes regulate the expression levels of these transcripts in granulosa cells in vitro. Porcine cumulus cells expressed higher levels of PFKP and LDHA transcripts than mural granulosa cells (MGCs). However, co‐culturing with oocytes had no significant effect on the isolated cumulus cells. While murine oocytes promoted the expression of both Pfkp and Ldha transcripts by murine MGCs, porcine oocytes promoted the expression of only Pfkp, but not Ldha transcripts by murine MGCs. Neither murine nor porcine oocytes affected PFKP and LDHA expression by porcine MGCs. Moreover, in the presence of porcine follicular fluid, porcine oocytes maintained the expression of PFKP, but not LDHA by porcine cumulus cells. Therefore, porcine oocytes are capable of regulating the expression of PFKP but not LDHA in granulosa cells in coordination with unknown factor(s) present in the follicular fluid.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: cumulus cells; glycolysis; granulosa cells; porcine oocytes

Document Type: Research Article

Publication date: September 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more