Skip to main content
padlock icon - secure page this page is secure

Free Content Pathway‐Guided Identification of Gene‐Gene Interactions

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Assessing gene‐gene interactions (GxG) at the gene level can permit examination of epistasis at biologically functional units with amplified interaction signals from marker‐marker pairs. While current gene‐based GxG methods tend to be designed for two or a few genes, for complex traits, it is often common to have a list of many candidate genes to explore GxG. We propose a regression model with pathway‐guided regularization for detecting interactions among genes. Specifically, we use the principal components to summarize the SNP‐SNP interactions between a gene pair, and use an L1 penalty that incorporates adaptive weights based on biological guidance and trait supervision to identify important main and interaction effects. Our approach aims to combine biological guidance and data adaptiveness, and yields credible findings that may be likely to shed insights in order to formulate biological hypotheses for further molecular studies. The proposed approach can be used to explore the GxG with a list of many candidate genes and is applicable even when sample size is smaller than the number of predictors studied. We evaluate the utility of the proposed method using simulation and real data analysis. The results suggest improved performance over methods not utilizing pathway and trait guidance.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Pathway analysis; bio‐knowledge‐guided; gene‐gene interactions

Document Type: Research Article

Publication date: November 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more