Skip to main content
padlock icon - secure page this page is secure

Free Content Identifying Modifier Loci in Existing Genome Scan Data

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

In many genetic disorders in which a primary disease-causing locus has been identified, evidence exists for additional trait variation due to genetic factors. These findings have led to studies seeking secondary ‘modifier’ loci. Identification of modifier loci provides insight into disease mechanisms and may provide additional screening and treatment targets. We believe that modifier loci can be identified by re-analysis of genome screen data while controlling for primary locus effects. To test this hypothesis, we simulated multiple replicates of typical genome screening data on to two real family structures from a study of hypertrophic cardiomyopathy. With this marker data, we simulated two trait models with characteristics similar to one measure of hypertrophic cardiomyopathy. Both trait models included 3 genes. In the first, the trait was influenced by a primary gene, a secondary ‘modifier’ gene, and a third very small effect gene. In the second, we modeled an interaction between the first two genes. We examined power and false positive rates to map the secondary locus while controlling for the effect of the primary locus with two types of analyses. First, we examined Monte Carlo Markov chain (MCMC) simultaneous segregation and linkage analysis as implemented in Loki, for which we calculated two scoring statistics. Second, we calculated LOD scores using an individual-specific liability class based on the quantitative trait value. We found that both methods produced scores that are significant on a genome-wide level in some replicates. We conclude that mapping of modifier loci in existing samples is possible with these methods.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: complex trait; linkage analysis; modifier gene; monte carlo markov chain; statistical genetics

Document Type: Research Article

Affiliations: 1: Department of Epidemiology, UT M.D. Anderson Cancer Center, Houston, TX 2: Center for Cardiovascular Genetic Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX

Publication date: September 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more