Skip to main content
padlock icon - secure page this page is secure

Free Content A Bayesian Spatial Multimarker Genetic Random-Effect Model for Fine-Scale Mapping

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Multiple markers in linkage disequilibrium (LD) are usually used to localize the disease gene location. These markers may contribute to the disease etiology simultaneously. In contrast to the single-locus tests, we propose a genetic random effects model that accounts for the dependence between loci via their spatial structures. In this model, the locus-specific random effects measure not only the genetic disease risk, but also the correlations between markers. In other words, the model incorporates this relation in both mean and covariance structures, and the variance components play important roles. We consider two different settings for the spatial relations. The first is our proposal, relative distance function (RDF), which is intuitive in the sense that markers nearby are likely to correlate with each other. The second setting is a common exponential decay function (EDF). Under each setting, the inference of the genetic parameters is fully Bayesian with Markov chain Monte Carlo (MCMC) sampling. We demonstrate the validity and the utility of the proposed approach with two real datasets and simulation studies. The analyses show that the proposed model with either one of two spatial correlations performs better as compared with the single locus analysis. In addition, under the RDF model, a more precise estimate for the disease locus can be obtained even when the candidate markers are fairly dense. In all simulations, the inference under the true model provides unbiased estimates of the genetic parameters, and the model with the spatial correlation structure does lead to greater confidence interval coverage probabilities.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bayesian inference; MCMC; disease gene localization; mixed effects model; spatial relation

Document Type: Research Article

Affiliations: 1: Institute of Statistics and Information Science, College of Science, National Changhua University of Education 2: Department of Public Health and Institute of Epidemiology, College of Public Health, National Taiwan University

Publication date: September 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more