Skip to main content
padlock icon - secure page this page is secure

Free Content A Haplotype Similarity Based Transmission/Disequilibrium Test under Founder Heterogeneity

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Taking advantage of increasingly available high-density single nucleotide polymorphisms (SNP) markers across the genome, various types of transmission/disequilibrium tests (TDT) using haplotype information have been developed. A practical challenge arising in such studies is the possibility that transmitted haplotypes have inherited disease-causing mutations from different ancestral chromosomes, or do not bear any disease-causing mutations (founder heterogeneity). To reduce the loss of signal strength due to founder heterogeneity, we propose an SP-TDT test that combines a sequential peeling procedure with the haplotype similarity based TDT method. The proposed SP-TDT method is applicable to any size of nuclear family with or without ambiguous phase information. Simulation studies suggest that the SP-TDT method has the correct type I error rate in stratified populations, and enhanced power compared with some existing haplotype similarity based TDT methods. Finally, we apply the proposed method to study the association of the leptin gene with obesity from the National Heart, Lung, and Blood Institute Family Heart Study.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: candidate gene association studies; founder heterogeneity; haplotype similarity analyses; linkage disequilibrium

Document Type: Research Article

Affiliations: 1: Division of Biostatistics, School of Medicine, Washington University, St. Louis, MO 63110 2: Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931 3: Department of Neurology, Boston University, Boston, MA 02215

Publication date: July 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more