Skip to main content
padlock icon - secure page this page is secure

Free Content Mutagenesis by Transient Misalignment in the Human Mitochondrial DNA Control Region

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


To study spontaneous base substitutions in human mitochondrial DNA (mtDNA), we reconstructed the mutation spectra of the hypervariable segments I and II (HVS I and II) using published data on polymorphisms from various human populations. Classification analysis revealed numerous mutation hotspots in HVS I and II mutation spectra. Statistical analysis suggested that strand dislocation mutagenesis, operating in monotonous runs of nucleotides, plays an important role in generating base substitutions in the mtDNA control region. The frequency of mutations compatible with the primer strand dislocation in the HVS I region was almost twice as high as that for template strand dislocation. Frequencies of mutations compatible with the primer and template strand dislocation models are almost equal in the HVS II region. Further analysis of strand dislocation models suggested that an excess of pyrimidine transitions in mutation spectra, reconstructed on the basis of the L-strand sequence, is caused by an excess of both L-strand pyrimidine transitions and H-strand purine transitions. In general, no significant bias toward parent H-strand-specific dislocation mutagenesis was found in the HVS I and II regions.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: context; dislocation mutagenesis; mitochondrial DNA; mutation hotspot; spontaneous substitution

Document Type: Research Article

Publication date: July 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more