Skip to main content
padlock icon - secure page this page is secure

Susceptibility of four field populations of the diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) to six insecticides in the Sydney region, New South Wales, Australia

Buy Article:

$52.00 + tax (Refund Policy)


Concerns about the failure of insecticides to control the diamondback moth (DBM) Plutella xylostella in the Sydney region of New South Wales, Australia, necessitated the current investigation to establish the susceptibility of four field populations of the DBM to six insecticides. These include two each of organophosphates (OPs), and synthetic pyrethroid insecticides as well as two new products with different modes of action, spinosad and indoxacarb, currently recommended for DBM control in the region. Topical application of the insecticides to the third-instar larvae showed high resistance to pyrethroids (permethrin and esfenvalerate) of 35.0- to 490.0-fold. Resistance to the OPs (methamidophos and chlorpyrifos) and indoxacarb ranged from 12.1- to 36.2-fold and from 11.4- to 34.6-fold, respectively. However, the field populations were susceptible to spinosad (resistance factors only two- to threefold compared with the susceptible strain). A 2 h pre-treatment of the esfenvalerate-resistant strain with the synergists piperonyl butoxide and diethyl maleate increased the toxicity of esfenvalerate by 30.0- and 1.9-fold, respectively, suggesting the involvement of esterases and/or monooxygenases as the key mechanism(s) of insecticide resistance with glutathione S-transferases playing a minor role.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: esterases; monooxygenases; organophosphates; pyrethroids; resistance; synergist

Document Type: Research Article

Publication date: November 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more