Skip to main content
padlock icon - secure page this page is secure

M:N Object matching on multiscale datasets based on MBR combinatorial optimization algorithm and spatial district

Buy Article:

$52.00 + tax (Refund Policy)

Object matching is critical for updating, maintaining, integrating, and quality assessing spatial data. However, matching data are often obtained from different sources and have problems of positional discrepancy and different levels of detail. To resolve these problems, this article presents a multiscale polygonal object‐matching approach, called the minimum bounding rectangle combinatorial optimization (MBRCO) with spatial district (SD). This method starts with the MBRCO algorithm and its enhancement using the SD to find corresponding MBRs of one‐to‐one, one‐to‐many, and many‐to‐many matching pairs. Then, it aligns the MBRs of the matching pairs to identify object‐matching pairs, which are evaluated using a matching criterion to find geometrically corresponding objects. Our approach was experimentally validated using two topographical datasets at 1:2k and 1:10k. The proposed approach outperforms the common two‐way area overlap method and another method based on the contextual information and relaxation labeling algorithm. The proposed method achieved accurate aggregation of the many‐to‐many matching pairs under the positional discrepancy scenario.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: December 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more