Skip to main content
padlock icon - secure page this page is secure

An Adaptive Method of Non‐stationary Variogram Modeling for DEM Error Surface Simulation

Buy Article:

$52.00 + tax (Refund Policy)


Geostatistical characterization of local DEM error is usually based on the assumption of a stationary variogram model which requires the mean and variance to be finite and constant in the area under investigation. However, in practice this assumption is appropriate only in a restricted spatial location, where the local experimental variograms vary slowly. Therefore, an adaptive method is developed in this article to model non‐stationary variograms, for which the estimator and the indicator for characterization of spatial variation are a Voronoi map and the standard deviation of mean values displayed in the Voronoi map, respectively. For the adaptive method, the global domain is divided into different meshes with various sizes according to the variability of local variograms. The adaptive method of non‐stationary variogram modeling is applied to simulating error surfaces of a LiDAR derived DEM located in Sichuan province, China. Results indicate that the locally adaptive variogram model is more accurate than the global one for capturing the characterization of spatial variation in DEM errors. The adaptive model can be considered as an alternative approach to modeling non‐stationary variograms for DEM error surface simulation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Geomatics College, Shandong University of Science and Technology 2: Shanghai Astronomical Observatory

Publication date: December 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more