Skip to main content
padlock icon - secure page this page is secure

Representation of Uncertainty and Integration of PGIS-based Grazing Intensity Maps Using Evidential Belief Functions

Buy Article:

$52.00 + tax (Refund Policy)

Abstract

In a project to classify livestock grazing intensity using participatory geographic information systems (PGIS), we encountered the problem of how to synthesize PGIS-based maps of livestock grazing intensity that were prepared separately by local experts. We investigated the utility of evidential belief functions (EBFs) and Dempster's rule of combination to represent classification uncertainty and integrate the PGIS-based grazing intensity maps. These maps were used as individual sets of evidence in the application of EBFs to evaluate the proposition that “This area or pixel belongs to the high, medium, or low grazing intensity class because the local expert(s) says (say) so”. The class-area-weighted averages of EBFs based on each of the PGIS-based maps show that the lowest degree of classification uncertainty is associated with maps in which “vegetation species” was used as the mapping criterion. This criterion, together with local landscape attributes of livestock use may be considered as an appropriate standard measure for grazing intensity. The maps of integrated EBFs of grazing intensity show that classification uncertainty is high when the local experts apply at least two mapping criteria together. This study demonstrates the usefulness of EBFs to represent classification uncertainty and the possibility to use the EBF values in identifying and using criteria for PGIS-based mapping of livestock grazing intensity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: International Institute for Geo-Information Science and Earth Observation (ITC) 2: Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds 3: Resource Ecology Group, Wageningen University

Publication date: June 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more