Skip to main content
padlock icon - secure page this page is secure

Numerical Bifurcation and Spectral Stability of Wavetrains in Bidirectional Whitham Models

Buy Article:

$59.00 + tax (Refund Policy)

We consider several different bidirectional Whitham equations that have recently appeared in the literature. Each of these models combines the full two‐way dispersion relation from the incompressible Euler equations with a canonical shallow water nonlinearity, providing nonlocal model equations that may be expected to exhibit some of the interesting high‐frequency phenomena present in the Euler equations that standard “long‐wave” theories fail to capture. Of particular interest here is the existence and stability of periodic traveling wave solutions in such models. Using numerical bifurcation techniques, we construct global bifurcation diagrams for each system and compare the global structure of branches, together with the possibility of bifurcation branches terminating in a “highest” singular (peaked/cusped) wave. We also numerically approximate the stability spectrum along these bifurcation branches and compare the stability predictions of these models. Our results confirm a number of analytical results concerning the stability of asymptotically small waves in these models and provide new insights into the existence and stability of large amplitude waves.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more