Skip to main content
padlock icon - secure page this page is secure

Darboux Transformations and Global Explicit Solutions for Nonlocal Davey–Stewartson I Equation

Buy Article:

$59.00 + tax (Refund Policy)

For the nonlocal Davey–Stewartson I equation, the Darboux transformation is considered and explicit expressions of the solutions are obtained. Like other nonlocal equations, many solutions of this equation may have singularities. However, by suitable choice of parameters in the solutions of the Lax pair, it is proved that the solutions obtained from seed solutions which are zero and an exponential function of t, respectively, by a Darboux transformation of degree n are global solutions of the nonlocal Davey–Stewartson I equation. The derived solutions are soliton solutions when the seed solution is zero, in the sense that they are bounded and have n peaks, and “dark cross soliton” solutions when the seed solution is an exponential function of t, in the sense that they are bounded and their norms change fast along some crossing straight lines.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more