Skip to main content
padlock icon - secure page this page is secure

The Evolution of Internal Undular Bores over a Slope in the Presence of Rotation

Buy Article:

$59.00 + tax (Refund Policy)

The large‐amplitude internal waves commonly observed in the coastal ocean often take the form of unsteady undular bores. Hence, here, we examine the long‐time combined effect of variable topography and background rotation on the propagation of internal undular bores, using the framework of a variable‐coefficient Ostrovsky equation. Because the leading waves in an internal undular bore are close to solitary waves, we first examine the evolution of a single solitary wave. Then, we consider an internal undular bore, for which two methods of generation are used. One method is the matured undular bore developed from an initial shock box in the Korteweg–de Vries equation, that is the Ostrovsky equation with the rotational term omitted, and the other method is a modulated cnoidal wave solution of the same Korteweg–de Vries equation. It transpires that in the long‐time model simulations, the rotational effect disintegrates the nonlinear waves into inertia‐gravity waves, and then there emerge complicated interactions between these inertia‐gravity waves and the modulated periodic waves of the undular bore, especially at the rear part of the undular bore. However, near the front of the undular bore, nonlinear effects further modulate these waves, with the eventual emergence of nonlinear envelope wave packets.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more