Skip to main content
padlock icon - secure page this page is secure

Asymptotic Approximations to the Nodes and Weights of Gauss–Hermite and Gauss–Laguerre Quadratures

Buy Article:

$59.00 + tax (Refund Policy)

Asymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a stand‐alone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than 100, the asymptotic methods are enough for a double precision accuracy computation (15–16 digits) of the nodes and weights of the Gauss–Hermite and Gauss–Laguerre quadratures.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: April 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more