Skip to main content
padlock icon - secure page this page is secure

Transformations between Nonlocal and Local Integrable Equations

Buy Article:

$59.00 + tax (Refund Policy)

Recently, a number of nonlocal integrable equations, such as the PT‐symmetric nonlinear Schrödinger (NLS) equation and PT‐symmetric Davey–Stewartson equations, were proposed and studied. Here, we show that many of such nonlocal integrable equations can be converted to local integrable equations through simple variable transformations. Examples include these nonlocal NLS and Davey–Stewartson equations, a nonlocal derivative NLS equation, the reverse space‐time complex‐modified Korteweg–de Vries (CMKdV) equation, and many others. These transformations not only establish immediately the integrability of these nonlocal equations, but also allow us to construct their Lax pairs and analytical solutions from those of the local equations. These transformations can also be used to derive new nonlocal integrable equations. As applications of these transformations, we use them to derive rogue wave solutions for the partially PT‐symmetric Davey–Stewartson equations and the nonlocal derivative NLS equation. In addition, we use them to derive multisoliton and quasi‐periodic solutions in the reverse space‐time CMKdV equation. Furthermore, we use them to construct many new nonlocal integrable equations such as nonlocal short pulse equations, nonlocal nonlinear diffusion equations, and nonlocal Sasa–Satsuma equations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more