Skip to main content
padlock icon - secure page this page is secure

Stationary Expansion Shocks for a Regularized Boussinesq System

Buy Article:

$59.00 + tax (Refund Policy)

Stationary expansion shocks have been identified recently as a new type of solution to hyperbolic conservation laws regularized by nonlocal dispersive terms that naturally arise in shallow‐water theory. These expansion shocks were studied previously for the Benjamin‐Bona‐Mahony (BBM) equation using matched asymptotic expansions. In this paper, we extend the BBM analysis to the regularized Boussinesq system by using Riemann invariants of the underlying dispersionless shallow‐water equations. The extension for a system is nontrivial, requiring a combination of small amplitude, long‐wave expansions with high order matched asymptotics. The constructed asymptotic solution is shown to be in excellent agreement with accurate numerical simulations of the Boussinesq system for a range of appropriately smoothed Riemann data.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more