Skip to main content
padlock icon - secure page this page is secure

On the Spectral Stability of Kinks in 2D Klein–Gordon Model with Parity‐Time‐Symmetric Perturbation

Buy Article:

$59.00 + tax (Refund Policy)

In a series of recent works by Demirkaya et al., stability analysis for the static kink solutions to the one‐dimensional continuous and discrete Klein–Gordon equations with a PT‐symmetric perturbation has been performed. In the present paper, we study two‐dimensional (2D) quadratic operator pencil with a small localized perturbation. Such an operator pencil is motivated by the stability problem for the static kink in 2D Klein–Gordon field taking into account spatially localized PT‐symmetric perturbation, which is in the form of viscous friction. Viscous regions with positive and negative viscosity coefficient are balanced. For the considered operator pencil, we show that its essential spectrum has certain critical points generating eigenvalues under the perturbation. Our main results are sufficient conditions ensuring the existence or absence of such eigenvalues as well as the asymptotic expansions for these eigenvalues if they exist.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: April 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more