Skip to main content
padlock icon - secure page this page is secure

Cubic and Quartic Transformations of the Sixth Painlevé Equation in Terms of Riemann–Hilbert Correspondence

Buy Article:

$59.00 + tax (Refund Policy)

The starting point of this paper is a classification of quadratic polynomial transformations of the monodromy manifold for the 2 × 2 isomonodromic Fuchsian systems associated to the Painlevé VI equation. Up to birational automorphisms of the monodromy manifold, we find three transformations. Two of them are identified as the action of known quadratic or quartic transformations of the Painlevé VI equation. The third transformation of the monodromy manifold gives a new transformation of degree 3 of Picard’s solutions of Painlevé VI.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2013

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more