Skip to main content
padlock icon - secure page this page is secure

Classification of Solitary Wave Bifurcations in Generalized Nonlinear Schrödinger Equations

Buy Article:

$59.00 + tax (Refund Policy)

Bifurcations of solitary waves are classified for the generalized nonlinear Schrödinger equations with arbitrary nonlinearities and external potentials in arbitrary spatial dimensions. Analytical conditions are derived for three major types of solitary wave bifurcations, namely, saddle‐node, pitchfork, and transcritical bifurcations. Shapes of power diagrams near these bifurcations are also obtained. It is shown that for pitchfork and transcritical bifurcations, their power diagrams look differently from their familiar solution‐bifurcation diagrams. Numerical examples for these three types of bifurcations are given as well. Of these numerical examples, one shows a transcritical bifurcation, which is the first report of transcritical bifurcations in the generalized nonlinear Schrödinger equations. Another shows a power loop phenomenon which contains several saddle‐node bifurcations, and a third example shows double pitchfork bifurcations. These numerical examples are in good agreement with the analytical results.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more