Skip to main content
padlock icon - secure page this page is secure

Finite-Dimensional Integrable Hamiltonian Systems Related to the Nonlinear Schrödinger Equation

Buy Article:

$59.00 + tax (Refund Policy)

A complete treatment of the binary nonlinearizations of spectral problems of the nonlinear Schrödinger (NLS) equation with the choice of distinct eigenvalue parameters is presented. Two kinds of constraints between the potentials and the eigenfunctions of the NLS equation are considered. From the first constraint, a pair of new finite-dimensional completely integrable Hamiltonian systems which constitute an integrable decomposition of the NLS equation are obtained. From the second constraint, a novel finite-dimensional integrable Hamiltonian system, which includes the system of multiple three-wave interaction as a special case, is obtained. It is found that the eigenvalue parameters real or not can lead to completely different symplectic structures of the restricted NLS flows. In addition, a relationship between the binary restricted Ablowitz–Kaup–Newell–Segur flows and the restricted NLS flows is revealed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Xuzhou Normal University

Publication date: November 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more