Skip to main content
padlock icon - secure page this page is secure

Soliton Solutions of the KP Equation and Application to Shallow Water Waves

Buy Article:

$59.00 + tax (Refund Policy)

The main purpose of this paper is to give a survey of recent developments on a classification of soliton solutions of the Kadomtsev–Petviashvili equation. The paper is self-contained, and we give complete proofs of theorems needed for the classification. The classification is based on the totally nonnegative cells in the Schubert decomposition of the real Grassmann manifold, Gr(N, M), the set of N-dimensional subspaces in . Each soliton solution defined on Gr(N, M) asymptotically consists of the N number of line-solitons for y ≫ 0 and the M − N number of line-solitons for y ≪ 0 . In particular, we give detailed description of the soliton solutions associated with Gr(2, 4), which play a fundamental role in the study of multisoliton solutions. We then consider a physical application of some of those solutions related to the Mach reflection discussed by J. Miles in 1977.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: University of Colorado 2: Ohio State University

Publication date: July 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more