Skip to main content
padlock icon - secure page this page is secure

Vortices and Polynomials

Buy Article:

$59.00 + tax (Refund Policy)

The relationship between point vortex dynamics and the properties of polynomials with roots at the vortex positions is discussed. Classical polynomials, such as the Hermite polynomials, have roots that describe the equilibria of identical vortices on the line. Stationary and uniformly translating vortex configurations with vortices of the same strength but positive or negative orientation are given by the zeros of the Adler–Moser polynomials, which arise in the description of rational solutions of the Korteweg–de Vries equation. For quadrupole background flow, vortex configurations are given by the zeros of polynomials expressed as Wronskians of Hermite polynomials. Further, new solutions are found in this case using the special polynomials arising in the description of rational solutions of the fourth PainlevĂ© equation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: University of Kent, Canterbury

Publication date: July 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more