Skip to main content
padlock icon - secure page this page is secure

Nonlocal Symmetries for Bilinear Equations and Their Applications

Buy Article:

$59.00 + tax (Refund Policy)

In this paper, nonlocal symmetries for the bilinear KP and bilinear BKP equations are re-studied. Two arbitrary parameters are introduced in these nonlocal symmetries by considering gauge invariance of the bilinear KP and bilinear BKP equations under the transformation . By expanding these nonlocal symmetries in power series of each of two parameters, we have derived two types of bilinear NKP hierarchies and two types of bilinear NBKP hierarchies. An impressive observation is that bilinear positive and negative KP (NKP) and BKP hierarchies may be derived from the same nonlocal symmetries for the KP and BKP equations. Besides, as two concrete examples, we have derived bilinear B├Ącklund transformations for t−2 -flow of the NKP hierarchy and t−1 -flow of the NBKP hierarchy. All these results have made it clear that more nice integrable properties would be found for these obtained NKP hierarchies and NBKP hierarchies. Because KP and BKP hierarchies have played an essential role in soliton theory, we believe that the bilinear NKP and NBKP hierarchies will have their right place in this field.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Chinese Academy of Sciences, Beijing 2: Shanghai Jiao Tong University, Shanghai 3: Shaoxing College of Arts and Sciences

Publication date: April 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more