Skip to main content
padlock icon - secure page this page is secure

Damping of Periodic Waves in Physically Significant Wave Systems

Buy Article:

$59.00 + tax (Refund Policy)

Damping of periodic waves in the classically important nonlinear wave systems—nonlinear Schrödinger, Korteweg–deVries (KdV), and modified KdV—is considered here. For small damping, asymptotic analysis is used to find an explicit equation that governs the temporal evolution of the solution. These results are then confirmed by direct numerical simulations. The undamped periodic solutions are given in terms of Jacobi elliptic functions. The damping structure is found as a function of the elliptic function modulus, m=m(t) . The damping rate of the maximum amplitude is ascertained and is found to vary smoothly from the linear solution when m= 0 to soliton waves when m= 1 .
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: University of Colorado at BoulderUniversity of MichiganIstanbul Technical University

Publication date: October 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more