Skip to main content
padlock icon - secure page this page is secure

Mixing Closures for Conservation Laws in Stratified Flows

Buy Article:

$59.00 + tax (Refund Policy)

A closure for shocks involving the mixing of the fluids in two-layer stratified flows is proposed. The closure maximizes the rate of mixing, treating the dynamical hydraulic equations and entropy conditions as constraints. This closure may also be viewed as yielding an upper bound on the mixing rate by internal shocks. It is shown that the maximal mixing rate is accomplished by a shock moving at the fastest allowable speed against the upstream flow. Depending on whether the active constraint limiting this speed is the Lax entropy condition or the positive dissipation of energy, we distinguish precisely between internal hydraulic jumps and bores. Maximizing entrainment is shown to be equivalent to maximizing a suitable entropy associated to mixing. By using the latter, one can describe the flow globally by an optimization procedure, without treating the shocks separately. A general mathematical framework is formulated that can be applied whenever an insufficient number of conservation laws is supplemented by a maximization principle.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: University of Wisconsin Courant Institute

Publication date: July 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more