Skip to main content
padlock icon - secure page this page is secure

Long-time Solutions of the Ostrovsky Equation

Buy Article:

$59.00 + tax (Refund Policy)

The Ostrovsky equation is a modification of the Korteweg-de Vries equation which takes account of the effects of background rotation. It is well known that the usual Korteweg-de Vries solitary wave decays and is replaced by radiating inertia gravity waves. Here we show through numerical simulations that after a long-time a localized wave packet emerges as a persistent and dominant feature. The wavenumber of the carrier wave is associated with that critical wavenumber where the underlying group velocity is a minimum (in absolute value). Based on this feature, we construct a weakly nonlinear theory leading to a higher-order nonlinear Schrödinger equations in an attempt to describe the numerically found wave packets.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Loughborough University Woods Hole Oceanographic Institution

Publication date: July 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more