Skip to main content
padlock icon - secure page this page is secure

Short-Lived Large-Amplitude Pulses in the Nonlinear Long-Wave Model Described by the Modified Korteweg–De Vries Equation

Buy Article:

$59.00 + tax (Refund Policy)

The appearance and disappearance of short-lived large-amplitude pulses in a nonlinear long wave model is studied in the framework of the modified Korteweg–de Vries equation. The major mechanism of such wave generation is modulational instability leading to the generation and interaction of the breathers. The properties of breathers are studied both within the modified Korteweg–de Vries equation, and also within the nonlinear Schrödinger equations derived by an asymptotic reduction from the modified Korteweg–de Vries for weakly nonlinear wave packets. The associated spectral problems (AKNS or Zakharov-Shabat) of the inverse-scattering transform technique also are utilized. Wave formation due to this modulational instability is investigated for localized and for periodic disturbances. Nonlinear-dispersive focusing is identified as a possible mechanism for the formation of anomalously large pulses.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Loughborough University Institute of Applied Physics University of Sheffield

Publication date: February 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more