Skip to main content
padlock icon - secure page this page is secure

Wave Turbulence Is Almost Always Intermittent at Either Small or Large Scales

Buy Article:

$59.00 + tax (Refund Policy)

The asymptotic expansions for (1) the slow changes in particle number/energy density; namely, the kinetic equation, (2) frequency renormalization; and (3) the Nth-order structure functions for wave turbulence systems are almost always nonuniform at either small or large length scales. The manifestation of this nonuniformity is fully nonlinear behavior either in the form of localized structures (coherent structures, shocks) or condensates (nonzero mean over large distances). The result is intermittent behavior dominated by large fluctuation events, anomolous scaling, and far from joint Gaussian statistics. Despite this unexpected surprise, and it is a surprise considering that wave turbulence has been the subject of continuous and intense investigation for several decades, wave turbulence still offers an advantage over systems that are nonlinear over all scales. The advantage is that the nature of the fully nonlinear behavior often can be identified, which gives us reasonable hope that wave turbulent systems may be treated as a two species gas of random wavetrains and randomly occurring coherent structures.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Original Article

Affiliations: University of Warwick

Publication date: January 1, 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more