Skip to main content
padlock icon - secure page this page is secure

Self-similar Asymptotics for Linear and Nonlinear Diffusion Equations

Buy Article:

$59.00 + tax (Refund Policy)

The long-time asymptotic solutions of initial value problems for the heat equation and the nonlinear porous medium equation are self-similar spreading solutions. The symmetries of the governing equations yield three-parameter families of these solutions given in terms of their mass, center of mass, and variance. Unlike the mass and center of mass, the variance, or "time-shift," of a solution is not a conserved quantity for the nonlinear problem. We derive an optimal linear estimate of the long-time variance. Newman's Lyapunov functional is used to produce a maximum entropy time-shift estimate. Results are applied to nonlinear merging and time-dependent, inhomogeneously forced diffusion problems.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Massachusetts Institute of Technology 2: Northwestern University

Publication date: February 1, 1998

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more