Skip to main content
padlock icon - secure page this page is secure

On the Asymptotic and Numerical Analyses of Exponentially III‐Conditioned Singularly Perturbed Boundary Value Problems

Buy Article:

$59.00 + tax (Refund Policy)

Asymptotic and numerical methods are used to study several classes of singularly perturbed boundary value problems for which the underlying homogeneous operators have exponentially small eigenvalues. Examples considered include the familiar boundary layer resonance problems and some extensions and certain linearized equations associated with metastable internal layer motion. For the boundary layer resonance problems, a systematic projection method, motivated by the work of De Groen [1], is used to analytically calculate high‐order asymptotic solutions. This method justifies and extends some previous results obtained from the variational method of Grasman and Matkowsky [2]. A numerical approach, based on an integral equation formulation, is used to accurately compute boundary layer resonance solutions and their associated exponentially small eigenvalues. For various examples, the numerical results are shown to compare very favorably with two‐term asymptotic results. Finally, some Sturm‐Liouville operators with exponentially small spectral gap widths are studied. One such problem is applied to analyzing metastable internal layer motion for a certain forced Burgers equation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: April 1, 1995

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more