Skip to main content
padlock icon - secure page this page is secure

Slow Evolution in Perturbed Hamiltonian Systems

Buy Article:

$59.00 + tax (Refund Policy)

For parametrized Hamiltonian systems with an arbitrary, finite number of degrees of freedom, it is shown that secularly stable families of equilibrium solutions represent approximate trajectories for small (not necessarily Hamiltonian) perturbations of the original system. This basic result is further generalized to certain conservative, but not necessarily Hamiltonian, systems of differential equations. It generalizes to the conservative case a theorem due, in the dissipative case, to Tikhonov, to Gradshtein, and to Levin and Levinson. It justifies the use of physically motivated approximation procedures without invoking the method of averaging and without requiring nonresonance conditions or the integrability of the unperturbed Hamiltonian.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: University of Chicago Space Research Institute, Moscow

Publication date: June 1, 1994

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more