Skip to main content
padlock icon - secure page this page is secure

Geometric Aspects of Degenerate Modulation Equations

Buy Article:

$59.00 + tax (Refund Policy)

Geometric aspects of degenerate modulation equations associated with spatially reversible systems are considered. Our primary observation is that stationary solutions of such equations always have a Poisson structure that is reminiscent of the equations governing the rigid body in mechanics. The Poisson structure is used to study the geometry of “spatial” phase space: A nontrivial Casimir of the Poisson structure provides a foliation of the phase space, spatially periodic states are given by critical points on level sets of the Casimir and stability type is given by the rate of change of the Casimir function. The bifurcation of spatially periodic states is then studied using singularity theory. The case where branches intersect transversely is treated in detail.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Mathematics Institute, Rijksuniversiteit Utrecht

Publication date: February 1, 1994

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more