Skip to main content
padlock icon - secure page this page is secure

Eliminating Indeterminacy in Singularly Perturbed Boundary Value Problems with Translation Invariant Potentials

Buy Article:

$52.00 + tax (Refund Policy)

Solutions exhibiting an internal layer structure are constructed for a class of nonlinear singularly perturbed boundary value problems with translation invariant potentials. For these problems, a routine application of the method of matched asymptotic expansions fails to determine the locations of the internal layer positions. To overcome this difficulty, we present an analytical method that is motivated by the work of Kath, Knessl and Matkowsky [4]. To construct a solution having n internal layers, we first linearize the boundary value problem about the composite expansion provided by the method of matched asymptotic expansions. The eigenvalue problem associated with the homogeneous form of this linearization is shown to have n exponentially small eigenvalues. The condition that the solution to the linearized problem has no component in the subspace spanned by the eigenfunctions corresponding to these exponentially small eigenvalues determines the internal layer positions. These “near” solvability conditions yield algebraic equations for the internal layer positions, which are analyzed for various classes of nonlinearities.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Stanford University

Publication date: August 1, 1992

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more