Provider: Ingenta Connect
Database: Ingenta Connect
Content: application/x-research-info-systems
TY - ABST
AU - Kedem, Gershon
AU - Parter, Seymour V.
AU - Steuerwalt, Michael
TI - The Solutions of a Model Nonlinear Singular Perturbation Problem Having A Continuous Locus of Singular Points
JO - Studies in Applied Mathematics
PY - 1980-10-01T00:00:00///
VL - 63
IS - 2
SP - 119
EP - 146
N2 - Consider the boundary value problem *εy″* =(*y*
^{2} − *t*
^{2})*y′*, −1 *t*0, *y*(−1) = *A*, *y*(0) = *B*. We discuss the multiplicity of solutions and their limiting behavior as *ε*→+0+
for certain choices of *A* and *B*. In particular, when *A* = 1, *B* = 0, a bifurcation analysis gives a detailed and fairly complete analysis. The interest here arises from the complexity of the set of "turning points."
UR - https://www.ingentaconnect.com/content/bpl/sapm/1980/00000063/00000002/art00003
M3 - doi:10.1002/sapm1980632119
UR - https://doi.org/10.1002/sapm1980632119
ER -