Skip to main content
padlock icon - secure page this page is secure

Bayesian non‐parametric survival regression for optimizing precision dosing of intravenous busulfan in allogeneic stem cell transplantation

Buy Article:

$47.00 + tax (Refund Policy)

Allogeneic stem cell transplantation is now part of standard care for acute leukaemia. To reduce toxicity of the pretransplant conditioning regimen, intravenous busulfan is usually used as a preparative regimen for acute leukaemia patients undergoing allogeneic stem cell transplantation. Systemic busulfan exposure, characterized by the area under the plasma concentration versus time curve, AUC, is strongly associated with clinical outcome. An AUC that is too high is associated with severe toxicities, whereas an AUC that is too low carries increased risks of recurrence of disease and failure to engraft. Consequently, an optimal AUC‐interval needs to be determined for therapeutic use. To address the possibility that busulfan pharmacokinetics and pharmacodynamics vary significantly with patients’ characteristics, we propose a tailored approach to determine optimal covariate‐specific AUC‐intervals. To estimate these personalized AUC‐intervals, we apply a flexible Bayesian non‐parametric regression model based on a dependent Dirichlet process and Gaussian process. Our analyses of a data set of 151 patients identified optimal therapeutic intervals for AUC that varied substantively with age and whether the patient was in complete remission or had active disease at transplant. Extensive simulations to evaluate the dependent Dirichlet process–Gaussian process model in similar settings showed that its performance compares favourably with alternative methods. We provide an R package, DDPGPSurv, that implements the dependent Dirichlet process–Gaussian process model for a broad range of survival regression analyses.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Allogeneic stem cell transplantation; Bayesian non‐parametrics; Personalized medicine; Survival regression

Document Type: Research Article

Publication date: 01 April 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more