Skip to main content
padlock icon - secure page this page is secure

Content loaded within last 14 days MALMEM: model averaging in linear measurement error models

Buy Article:

$52.00 + tax (Refund Policy)

We develop model averaging estimation in the linear regression model where some covariates are subject to measurement error. The absence of the true covariates in this framework makes the calculation of the standard residual‐based loss function impossible. We take advantage of the explicit form of the parameter estimators and construct a weight choice criterion. It is asymptotically equivalent to the unknown model average estimator minimizing the loss function. When the true model is not included in the set of candidate models, the method achieves optimality in terms of minimizing the relative loss, whereas, when the true model is included, the method estimates the model parameter with root n rate. Simulation results in comparison with existing Bayesian information criterion and Akaike information criterion model selection and model averaging methods strongly favour our model averaging method. The method is applied to a study on health.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Measurement error; Model averaging; Model selection; Optimality; Weight

Document Type: Research Article

Publication date: September 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more