Skip to main content
padlock icon - secure page this page is secure

Intrinsic Gaussian processes on complex constrained domains

Buy Article:

$52.00 + tax (Refund Policy)

We propose a class of intrinsic Gaussian processes (GPs) for interpolation, regression and classification on manifolds with a primary focus on complex constrained domains or irregularly shaped spaces arising as subsets or submanifolds of R, R2, R3 and beyond. For example, intrinsic GPs can accommodate spatial domains arising as complex subsets of Euclidean space. Intrinsic GPs respect the potentially complex boundary or interior conditions as well as the intrinsic geometry of the spaces. The key novelty of the approach proposed is to utilize the relationship between heat kernels and the transition density of Brownian motion on manifolds for constructing and approximating valid and computationally feasible covariance kernels. This enables intrinsic GPs to be practically applied in great generality, whereas existing approaches for smoothing on constrained domains are limited to simple special cases. The broad utilities of the intrinsic GP approach are illustrated through simulation studies and data examples.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Brownian motion; Constrained domain; Gaussian process; Heat kernel; Intrinsic covariance kernel; Manifold

Document Type: Research Article

Publication date: July 1, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more