Skip to main content
padlock icon - secure page this page is secure

Detecting and dating structural breaks in functional data without dimension reduction

Buy Article:

$43.00 + tax (Refund Policy)

Methodology is proposed to uncover structural breaks in functional data that is ‘fully functional’ in the sense that it does not rely on dimension reduction techniques. A thorough asymptotic theory is developed for a fully functional break detection procedure as well as for a break date estimator, assuming a fixed break size and a shrinking break size. The latter result is utilized to derive confidence intervals for the unknown break date. The main results highlight that the fully functional procedures perform best under conditions when analogous estimators based on functional principal component analysis are at their worst, namely when the feature of interest is orthogonal to the leading principal components of the data. The theoretical findings are confirmed by means of a Monte Carlo simulation study in finite samples. An application to annual temperature curves illustrates the practical relevance of the procedures proposed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Change point analysis; Functional data; Functional principal components; Functional time series; Structural breaks; Temperature data

Document Type: Research Article

Publication date: 01 June 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more