Skip to main content
padlock icon - secure page this page is secure

Random networks, graphical models and exchangeability

Buy Article:

$43.00 plus tax (Refund Policy)

We study conditional independence relationships for random networks and their interplay with exchangeability. We show that, for finitely exchangeable network models, the empirical subgraph densities are maximum likelihood estimates of their theoretical counterparts. We then characterize all possible Markov structures for finitely exchangeable random graphs, thereby identifying a new class of Markov network models corresponding to bidirected Kneser graphs. In particular, we demonstrate that the fundamental property of dissociatedness corresponds to a Markov property for exchangeable networks described by bidirected line graphs. Finally we study those exchangeable models that are also summarized in the sense that the probability of a network depends only on the degree distribution, and we identify a class of models that is dual to the Markov graphs of Frank and Strauss. Particular emphasis is placed on studying consistency properties of network models under the process of forming subnetworks and we show that the only consistent systems of Markov properties correspond to the empty graph, the bidirected line graph of the complete graph and the complete graph.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bidirected Markov property; Exchangeable arrays; Exponential random‐graph model; Graph limit; Graphon; Kneser graph; Marginal beta model; Möbius parameterization; Petersen graph; de Finetti's theorem

Document Type: Research Article

Publication date: 01 June 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more