Skip to main content
padlock icon - secure page this page is secure

The group lasso for logistic regression

Buy Article:

$52.00 + tax (Refund Policy)

Summary. 

The group lasso is an extension of the lasso to do variable selection on (predefined) groups of variables in linear regression models. The estimates have the attractive property of being invariant under groupwise orthogonal reparameterizations. We extend the group lasso to logistic regression models and present an efficient algorithm, that is especially suitable for high dimensional problems, which can also be applied to generalized linear models to solve the corresponding convex optimization problem. The group lasso estimator for logistic regression is shown to be statistically consistent even if the number of predictors is much larger than sample size but with sparse true underlying structure. We further use a two-stage procedure which aims for sparser models than the group lasso, leading to improved prediction performance for some cases. Moreover, owing to the two-stage nature, the estimates can be constructed to be hierarchical. The methods are used on simulated and real data sets about splice site detection in DNA sequences.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Categorical data; Co-ordinate descent algorithm; DNA splice site; Group variable selection; High dimensional generalized linear model; Penalized likelihood

Document Type: Research Article

Affiliations: Eidgenössische Technische Hochschule, Zürich, Switzerland

Publication date: February 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more