Skip to main content
padlock icon - secure page this page is secure

Estimation of generalized linear latent variable models

Buy Article:

$52.00 + tax (Refund Policy)


Generalized linear latent variable models (GLLVMs), as defined by Bartholomew and Knott, enable modelling of relationships between manifest and latent variables. They extend structural equation modelling techniques, which are powerful tools in the social sciences. However, because of the complexity of the log-likelihood function of a GLLVM, an approximation such as numerical integration must be used for inference. This can limit drastically the number of variables in the model and can lead to biased estimators. We propose a new estimator for the parameters of a GLLVM, based on a Laplace approximation to the likelihood function and which can be computed even for models with a large number of variables. The new estimator can be viewed as an M-estimator, leading to readily available asymptotic properties and correct inference. A simulation study shows its excellent finite sample properties, in particular when compared with a well-established approach such as LISREL. A real data example on the measurement of wealth for the computation of multidimensional inequality is analysed to highlight the importance of the methodology.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Categorical variables; LISREL; Laplace approximation; M-estimators; Penalized quasi-likelihood; Varimax rotation

Document Type: Research Article

Affiliations: University of Geneva, Switzerland

Publication date: November 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more