Skip to main content
padlock icon - secure page this page is secure

Composite conditional likelihood for sparse clustered data

Buy Article:

$52.00 + tax (Refund Policy)

Summary. 

Sparse clustered data arise in finely stratified genetic and epidemiologic studies and pose at least two challenges to inference. First, it is difficult to model and interpret the full joint probability of dependent discrete data, which limits the utility of full likelihood methods. Second, standard methods for clustered data, such as pairwise likelihood and the generalized estimating function approach, are unsuitable when the data are sparse owing to the presence of many nuisance parameters. We present a composite conditional likelihood for use with sparse clustered data that provides valid inferences about covariate effects on both the marginal response probabilities and the intracluster pairwise association. Our primary focus is on sparse clustered binary data, in which case the method proposed utilizes doubly discordant quadruplets drawn from each stratum to conduct inference about the intracluster pairwise odds ratios.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Composite likelihood; Doubly discordant quadruplet; Familial aggregation; Nuisance parameters; Pairwise likelihood; Pairwise odds ratio; Quasi-likelihood

Document Type: Research Article

Publication date: February 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more