Skip to main content
padlock icon - secure page this page is secure

Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method

Buy Article:

$52.00 + tax (Refund Policy)


The paper considers the problem of estimating the entire temperature field for every location on the globe from scattered surface air temperatures observed by a network of weather-stations. Classical methods such as spherical harmonics and spherical smoothing splines are not efficient in representing data that have inherent multiscale structures. The paper presents an estimation method that can adapt to the multiscale characteristics of the data. The method is based on a spherical wavelet approach that has recently been developed for a multiscale representation and analysis of scattered data. Spatially adaptive estimators are obtained by coupling the spherical wavelets with different thresholding (selective reconstruction) techniques. These estimators are compared for their spatial adaptability and extrapolation performance by using the surface air temperature data.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cross-validation; Function estimation; Multiresolution; Smoothing; Thresholding

Document Type: Research Article

Publication date: February 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more