Skip to main content
padlock icon - secure page this page is secure

An estimating equation for parametric shared frailty models with marginal additive hazards

Buy Article:

$52.00 + tax (Refund Policy)

Summary. 

Multivariate failure time data arise when data consist of clusters in which the failure times may be dependent. A popular approach to such data is the marginal proportional hazards model with estimation under the working independence assumption. In some contexts, however, it may be more reasonable to use the marginal additive hazards model. We derive asymptotic properties of the Lin and Ying estimators for the marginal additive hazards model for multivariate failure time data. Furthermore we suggest estimating equations for the regression parameters and association parameters in parametric shared frailty models with marginal additive hazards by using the Lin and Ying estimators. We give the large sample properties of the estimators arising from these estimating equations and investigate their small sample properties by Monte Carlo simulation. A real example is provided for illustration.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Estimating equations; Marginal additive hazards; Multivariate failure times; Parametric shared frailty models

Document Type: Research Article

Publication date: February 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more