Skip to main content
padlock icon - secure page this page is secure

Likelihood ratio tests in linear mixed models with one variance component

Buy Article:

$52.00 + tax (Refund Policy)


We consider the problem of testing null hypotheses that include restrictions on the variance component in a linear mixed model with one variance component and we derive the finite sample and asymptotic distribution of the likelihood ratio test and the restricted likelihood ratio test. The spectral representations of the likelihood ratio test and the restricted likelihood ratio test statistics are used as the basis of efficient simulation algorithms of their null distributions. The large sample 2 mixture approximations using the usual asymptotic theory for a null hypothesis on the boundary of the parameter space have been shown to be poor in simulation studies. Our asymptotic calculations explain these empirical results. The theory of Self and Liang applies only to linear mixed models for which the data vector can be partitioned into a large number of independent and identically distributed subvectors. One-way analysis of variance and penalized splines models illustrate the results.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Degrees of freedom; Non-regular problems; Penalized splines

Document Type: Research Article

Publication date: February 1, 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more