Skip to main content
padlock icon - secure page this page is secure

Advanced optical trapping by complex beam shaping

Buy Article:

$59.00 + tax (Refund Policy)

Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios. Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Optical micromanipulation; dielectrophoretic trapping; holographic beam shaping; non‐diffracting beams; optical bottle beams; optical tweezers; optoelectronic tweezers; photophoretic trapping; structured light fields

Document Type: Research Article

Publication date: November 1, 2013

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more