Skip to main content
padlock icon - secure page this page is secure

Decision-making method using a visual approach for cluster analysis problems; indicative classification algorithms and grouping scope

Buy Article:

$52.00 + tax (Refund Policy)


Currently, classifying samples into a fixed number of clusters (i.e. supervised cluster analysis) as well as unsupervised cluster analysis are limited in their ability to support ‘cross-algorithms’ analysis. It is well known that each cluster analysis algorithm yields different results (i.e. a different classification); even running the same algorithm with two different similarity measures commonly yields different results. Researchers usually choose the preferred algorithm and similarity measure according to analysis objectives and data set features, but they have neither a formal method nor tool that supports comparisons and evaluations of the different classifications that result from the diverse algorithms. Current research development and prototype decisions support a methodology based upon formal quantitative measures and a visual approach, enabling presentation, comparison and evaluation of multiple classification suggestions resulting from diverse algorithms. This methodology and tool were used in two basic scenarios: (I) a classification problem in which a ‘true result’ is known, using the Fisher iris data set; (II) a classification problem in which there is no ‘true result’ to compare with. In this case, we used a small data set from a user profile study (a study that tries to relate users to a set of stereotypes based on sociological aspects and interests). In each scenario, ten diverse algorithms were executed. The suggested methodology and decision support system produced a cross-algorithms presentation; all ten resultant classifications are presented together in a ‘Tetris-like’ format. Each column represents a specific classification algorithm, each line represents a specific sample, and formal quantitative measures analyse the ‘Tetris blocks’, arranging them according to their best structures, i.e. best classification.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: cluster analysis; decision support system; visualization techniques

Document Type: Research Article

Affiliations: Information System Program, Graduate School of Business Administration, Bar-Ilan University, Ramat-Gan 52900, Israel ; [email protected], Email: [email protected]

Publication date: July 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more