Skip to main content
padlock icon - secure page this page is secure

MPM simulation of interacting fluids and solids

Buy Article:

$52.00 + tax (Refund Policy)

The material point method (MPM) has attracted increasing attention from the graphics community, as it combines the strengths of both particle‐ and grid‐based solvers. Like the smoothed particle hydrodynamics (SPH) scheme, MPM uses particles to discretize the simulation domain and represent the fundamental unknowns. This makes it insensitive to geometric and topological changes, and readily parallelizable on a GPU. Like grid‐based solvers, MPM uses a background mesh for calculating spatial derivatives, providing more accurate and more stable results than a purely particle‐based scheme. MPM has been very successful in simulating both fluid flow and solid deformation, but less so in dealing with multiple fluids and solids, where the dynamic fluid‐solid interaction poses a major challenge. To address this shortcoming of MPM, we propose a new set of mathematical and computational schemes which enable efficient and robust fluid‐solid interaction within the MPM framework. These versatile schemes support simulation of both multiphase flow and fully‐coupled solid‐fluid systems. A series of examples is presented to demonstrate their capabilities and performance in the presence of various interacting fluids and solids, including multiphase flow, fluid‐solid interaction, and dissolution.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CCS Concepts; •Computing methodologies → Physical simulation

Document Type: Research Article

Publication date: December 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more